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I. INTRODUCTION

Numerical simulation of collisionless plasmas may be achieved by either

numerically solving the Vlasov and Poisson equations, or by computing the

motions of a large number of charged particles that are moving in their self-

consistent electric field. Although the two methods seek the same ends, they

differ fundamentally in their approach and comparison of their results is not

trivial.

This paper presents numerical solutions of the Vlasov and Poisson equa-

tions for several physically significant problems, and compares those

solutions with the results of particle simulations. Close quantitative agree-

ment is found. Such comparisons provide insight into the validity and limita-

tions of both methods. The problems considered are one-dimensional with

periodic boundary conditions, and involve only electrons moving over a uniform

positively charged background.

Numerical solutions of the Vlasov and Poisson equations have been

1-3
carried out by following the distribution function directly in phase plane,

and by transform methods. The most significant transform methods to date

are, the Fourier-Fourier method, 4 in which the distribution function is

Fourier-transformed with respect to both p-sition and velocity, and the

Fourier-Hermite method, 5 in which the distribution function is Fourier-trans-

formed with respect to posit±.-. and its velocity dependence is represented by

a series using Hermite polynomials. The numerical solutions presented here

are based on the Fourier-Fourier method. Earlier solutions based on this

II



nmethod had been linmited to two or three modes in the spatial representation.

The present solutý ns include up to gS modes and are capable of representing

st rong nonlinear e'ffects.

Particle sjmulation of plasmas has been applied to a variety of problems.

In this method, quantities such as the electric field, or mean velocity, which

depend on moments of the di ctribution function, are subject to random noise.

Special techniques are used in the present solutions to suppress this noise and

to accurately control the initial conditions of the plasma so that quantitative

Com0)arisons with Vlasov solutions can be made.

Section IT of the paper reviews the Fourier-Fourier method ased in the

solution of the Vlasov equation, which in its main features followt= the method

4
of Knorr. A similar review of the particle sirmulation method and initializa-

tion techniques is given in Sec. I1. This is followed in Sec. IV by the results

of comparative studies .,,f the two methods for four cases. These cases were

chosen among problems which had been considered earlier in the literature,

so that comparison cou ld be made not only between the present soluti ins, but

also with earlier iumnerical studies.

For both the Vlasov and particle solutioni presented here. time is meas-

-1
ured in unit. of o0 . where w is the plasnma frequency, length is measured

P p

in units of the periodicity length I, of the system, and velocity is measured

in Luits of Lw . It follows that the electric field is nmeasured in mnits of
p

mlnw. 2 /e, where e aid m are the electron charge and mass, respectively.
P



II. FOURIER-FOURIER TRANSFORM METHOD

In terms of the above units, the one-dimensional Vlasov equation for

electrons takes the fornm

8f af afi- v E-= 0

w¥here f(x.,, t) denotes the one-dimensional electron distribution function and

E(x,t) is the electric field. Let E(x, ) E eXt(xt) + E t(xt), where E

is an external field and Eint is the internal field due to electrons dnd the

positively charged background. The internal field is determined by Poisson's

equation

BE int" 1+00!

Ox = 1- f dv

Taking Fourier transforms of the distribution function with respect to

position and velocity and applying periodic boundary conditions in space with

periodicity length L = I yields

H n(q,t) exp(iqv) dv f(x, v, t) exp(-2ffinx) dx
-0 0

Q
The functions H (q. t) are the characteristic functions9 for each mode. n

denotes the mode number in space, and q is the velocity transform variable.

A Fourier transform in space of E(x,t) yields the modes of the electric field,

E n(t) = E(x,t) exp(-27Tinx) dx

Since f(x, v, t) and E(x, t) must be real valued, we ha e

4



H_n(q,t) = Hn - q,t0

(3)

E (t) = E (t)
-n n

After transformation and truncation at a finite number of modes m , which
max

will be retained in numerical computations, the Vlasov equation yields

8H 8H qan n

+ 2rn -cq " T Cn(q't) (4)

where

m
max

G (,t) = -ZITi 'ý E (t) Hn ( q,t) (5)
n Ljm n-rn

7n= -m
max

is a convolution term which comes from the nonlinear term of the Vlasov

equation. Poisson's equation gives

-2vii = _ IH (q = 0) for n i 0n n n

-int
and E 0.

Equations (4) are solved by integration along their characteristics, which

are straight lines of slop" 27'n in the (t, q) plane, as shown in Fig. 1. At

each time step, the value of H (q ,t) is obtained from the iterative formula
n

H (i+ ( q,t) = H (q- 2v nAt, t -At) + I-(q-27Tn&t) AtCn(q -ZTn At, t -At)

+ 1- qAt ( W i ) 0 (6)

in which the superscript denotes the number of iterations carried out. The

results presented in this paper were obtained using a single iteration.

4



From the definition of the convolutions C , Eq. (6) gives the improved

approximations H .., for n = m , + m , in terms of linear corn-n max max

binations of the preceding approximations H(i). The matrix o0 the coefficients
n

of these linear combinations is

0 E_I El _

iqAt
E 0 02 1 Z- '

E-1 E-2 0 E-3

and the iterative process defined by Eq. (6) converges only if all eigenvalues

X., for i = -m max". + m max of this matrix are smaller than unity.

Letting AT denote the transposed matrix of A, we have

2X.J < Trace(AAT) = (q&t)2 m U3 mlax

where U is the total electrostatic energy. The iterative process is convergent,

therefore, if

Imax '&t I(mrmaxU)I/ < 1 ,(7)

where qmax is the maximam value of q retained in the computation. This

criterion is satisfied by adjusting the time step At according to the magnitude

of the electrostatic energy.

Values of q in Eq. (6) are chosen to fall at grid pointe, as shown in

Fig. 1. The values of H at q - ZIrnAt, then,donotfall at the grid points,n

and must be interpolated using neighboring points. A nine-point Lagrangian

5



interpolation was used in the computations presented. If Aq denotes the

interval between grid points, we expect the distribution function f(x,v, t) to

be adequately defined over the interval -v < v < v in whichmax max

v max I/Aq.

The characteristic functions Hn(q,t), for n = 0,...,m max are evaluated

over the interval -qmax !S q : q Values of H (q,t) for negative values

oi n are found from the reality conditions (3). At the lower boundary,

q 7 -qmax. the values of Hn(q-27nAt, t-At) needed in Eq. (6) are unknown.

These values are set equal to zero, thus introducing a cutoff for the charac-

teristic functions at q = -qnax". The introduction of cutoffs m and qmax qmax

is equivalent to a smoothing of the distribution function f(x,v,t) defined by

f(Xvt) = w (v')dv' w (x') f(x+ x', v+ v',t) dx'
V0

where f(x,v,t) is the smoothed distribution function, and
rnt

max

w (x) = 1+ 2 cos2lrnxx Lj
n=1

and

sin qmax v

S(v) 7

are weight functions. The function w has a half-width Ax "/2m , andx max

the function w has a half width Av - 7/qm The choice of the cutoff

values mmax and qmax must be made so that the half-widths Ax and Av

are small compared to characteristic lengths and velocities in the plasma.

6



The particle code considered in this paper uses finite-size particles

having a Gaussian charge distribution with half-width a (see Sec. II). After

Fourier transformation in space and application of Poisson's equa ion, this

is equivalent to multiplying the electric field E of each mode by tne formm

factor W = exp[-(271am) ]. To represent the effect of finite-size particlesm

in the Vlasov solution, this iorm factor may be incorporated into the convolu-

tion term:
m

max

Cn(q,t) -27Ti Wm Em(t) Hn-m(q,t) (8)

m= -m
max

This modified form of the convolution reduces to the original form given by

Eq. (5) if the form factor Wm is set equal to anity.

The introduction of the form factor Wm modifies the dispersion relation

of the plasma, which becomes

Z1Tn + W o02 dv = 0
-00

where n is the mode number and w the corresponding complex frequency.

The kinetic energy is given by

T 0 (9)
(3q 2 q=O0

where H R(q, t) is the real part of H (q, t) and the electrostatic energy is0 0

given by
m

max (
U _ n H n(q =O,t) 2 (10)

n=l (27Tn)

7



Each term of tbe convclution array C is the sum of m terms.n max

Since there are ni terms in the array, the computing time required te
max

evaluate the convolution hy direct summation is pioportional to m . Themax

computing time is significantly reduced by using discrete Fourier transforms

to evalujate, the convolution. The arrays H (q,t) and E n(t) are Fourier-

transformed, their transforms are multiplied, and an inverse transform of

the product is carried out to obtain the convolution array C . Since H and
n n

E are not defined cyclically, but instead are zero for I n > m , it is
n max

necessary to append zeros to both ends of the arrays before carrying out the

transforms. Using a fast Fourier transform algorithm. 10,11 the computing

time bexcomes proportional to mr ax log2 m max. This method is advantageous

for m " 10.

III. PARTICLE SIMULATION METHOD

The particle code investigates the electrostatic behavior of a plasma by

simply following the motion of a large number of electrons in their self-

consis•tent (and any externally imposed) fields. Such codes are widely used in

6-6
computational plasma physics. The basic scheme consists oi a very simple

cycle. The positions of the particles determine the charge density, which by

Poisson's equation gives the self-consistent electric field. In one dimension

and in terms of the dimensionless units used in this paper, Poisson's equation

takes the form

OEint 
N

x N p(x)

j=l



where p.(x) is the charge density contributed by particle j and N is theJ

total number of particles. The particle velocities and positions are then

updated by the laws of dynamics, using a standard leapfrog scheme

v= -E

xv

Continuing about this basic cycle advances the system in time. Of course,

one must use a time step sufficiently small to accurately follow the time

variation of the forces in the system. One tenth of w is generally adequate.

In these codes one also inevitably needs to discretize space, .e. , to

introduce a regularly spaced grid. How one then defines the relevant physical

quantities on that grid is the principal place where various particle codes

differ. We here use a multipole expansion scheme12,13 and finite-size particles.

The charge density is then defined on the grid by a multipole expans-on of the

particle's charge density ab3ut its nearest grid-point location. We briefly

illustrate the procedure: Consider a particle j with a Gaussian charge distribu-

tion having a half-width a.

exp [-(x - x.) 2/Za ]

P.(x) =-

(it)1T 2 a

Here x. is the center-of-mass location of the particle. Introduce a grid and

describe the particle position as x. = n6 + ax. , where 6 is the cell size and3J 3

n denotes the nearest grid-point location. Ax. is at most 6/2. Hence,
3

assuning 6/2a << 1, we expand the charge density as follows:

9



exp[-(x-n6j aa2 1 + (x - n6) Ax. +

J (2it)l/ a a2 1

Clearly we arc replacing the finite-size particle centered somewhere in the

cell. by a finite-size particle centered at the nearest grid point, plus a

finite-size dipole there, plus (in principle) higher-order multipole terms.

In practice we stop at the dipole correction. Summing over a collection of

particles and introducing a Fourier transform gives the total charge density

in Fourier transform space as

p(k)- exp (-k 2 a 2 /2)) exp (-ikn6) [Q(n) - ikP(n) + ... J
n

Here Q(n) and P(n) are arrays giving the net monopole and dipole moments

2 2
associated with the nth grid point. Notice the form fact)r exp (-k a /2),

which arises due to the finite particle size. The electric field is now determined

simply by an inverse Fourier transform. The force on the particle is given by

the same multipole expansion procedure. Physically this amounts to repre-

senting the force on the finite-size particle as its monopole moment times the

electric field, plus the dipole moment times the derivative of the field.

The multipole expansion scheme is very appealing. First, it represents

a systematic and physical way to introduce the spatial grid. Indeed, an

7,8
expansion parameter has been exhibited. Charge-sharing schemes can be

related to the multipole expansion by stopping at the dipole approximation and

representing derivative terms by a difference over cells. Second, the multi -

pole expansion scheme relates the numerical approximation resulting from

10



introducing a grid to physical concepts. One is investigating the physics of

a plasma of fir.ite-size particles, and hence there are some modifications of

the plasma behavior.14 In general, the finite size of the particle enters the

analysis via the form factor, the Fourier transform of the particle charge

distribution. For ex.mple, for Gaussian particles, the form factor is

exp (-k a 2/2). We see that the long-wavelength (collective) behavior of the

system is essentially unaltered, but the short-wavelength (ka > 1) behavior is

systematically suppressed. This is welcome, since short-wavelength behavior

(X < cell size) cannot be represented accurately due to the finite size of the

grid. Furthermore, its suppression lowers the noise level and hence lowers

the effective collision frequency. This yields more realistic simulations with

fewer particles.

A further technique used for reducing the noise level in the particle code

16is known as a "quiet start." A quiet start simply refers to beginning the

calV.ulat.on with ordered initial conditions. Basically, no random numbers

are used to set up the calculations. A set of J discrete velocities is chosen

using the probability function

p = P(v)=• f(v) dv

where f(v) is the desired velocity distribution function. The procedure is

illustrated in Fig. 2 for the case of a Maxwellian distribution fun'ction. A

set of J values, pj = (j - 0.5)/J with j = 1, .... J, are chosen, equally spaced

between p = 0 and p = 1. The corresponding velocities, v = P (p), are then3 J1

11



distributed according to the distribution function f(v).17 Sets with J varying

from 100 to 1600 were used in the present computations. Equal numbers of

particles are then loaded at each grid point. The particles may be loaded

identically at all grid points using all the velocities in the set {vjI, and J

particles per cell are then needed. However, the particles form a number

of discrete small beams, which are subject to instabilities, and spurious

18
oscillations may appear. This difficulty is reduced by using a larger number

of beams. To achieve this without increasing the total number of particles,

the particle velocities are staggered so that each discrete velocity is repre-

sented only at every kth grid point. For example, the set of velocities may

be divided into k subsets by picking every kth value of the original set. The

particles are then loaded at different grid points with different subsets, repeat-

ing the same loading every kth cell. The repetition length k6 should be much

smaller than any physical length of interest in the problern.

The quiet start eliminates the initial noise level, and indeed leaves one

the option of starting the computations with specified initial conditions. An

initial density distribution p(x) may be obtained by giving the particles initial

displacements from their uniform distribution at the grid points. If k(x)

denotes the displacement of a particle loaded at x, and p denotes the uniform

density before displacements, then t(x) is found by integrating the equation

dx p(x + -)

The possibility of controlling initial conditions is important for detailed

comparisons with other codes--in particular, with the Vlasov code considered

in this paper.

12



IV. RESULTS

Case A

Consider a two-stream instability resulting from the initial conditions

defined by the distribution function

f(x,v,t = 0) Xf (v) [1+ ZE cos 2Tx] (11)
0

with

£ (v) 1 v exp(-v 2/2v ) (12)
(27)1/2T th

vth

and Vth = 0.30/7, E = 2.5 X 10-2. These initial conditions correspond to a

system length L = 10.5 XD* The initially excited mode, as shown in Eq. (11),

has a wavelength equal to the length of the system. The linear growth rates

19
for this problem have been computed by Grant and Feix. The first mode

is the only unstable mode and has a growth rate y = 0.25. Vlasov solutions

20
for this problem have been carried out by Armstrong and Montgomery

using the Fourier-Hermite method. Comparisons between Fourier-Hermite

solutions and particle-in-cell solutions have also been made by Armstrong

and Nielson.
2 1

The solid curve in Fig. 3 corresponds to the total electrostatic energy for

the Vlasov solution, with mmax = 21, q ax = 256, and Aq = 4. This energy

grows at approximately the linear growth rate from t = 10 to t = 20, and

saturates at 2.2% of the total energy. At the time of saturation, the bounce

frequency of electrons in the unstable large wave (0.33) is roughly equal to

13



the linear growth rate of the instability (0.24). This is a reasonable result

for saturation, since a large wave significantly modifies the particle dy-

namics in a time - l/WOB. After saturation, the electrostatic energy oscil-

lates with a period of approximatelf 20. The frequency of trapped electron

oscillations at saturation is wB = 0.33, which correspond3 to a trapping

period TR = 19.2.

The amplitude of the first mode (n = 1) is approximately an order of

magnitude larger than the amplitudes of the other modes (n -2 2). The higher

modes, however, have a significant effect on the solution, as shown by the

broken line in Fig. 3 (which corresponds to m a= 10). The Vlasov solu-max

tion was checked by reversing it at t = 20, and the small breoken line near

t = 0 in Fig. 3 shows the deviation.

The circles in Fig. 3 correspond to the particle solution with 51,200

particles and 256 cells. The particle half-width is a = 1.256, where 6 is

the cell size. The initial particle positions and velocities were chosen to

niatch the initial conditions of the Vlasov solution, using the quiet-start

method of Sec. III with 1600 velocities. Since there were 200 particles per

cell, the initial velocity distribution was repeated every 8 calls.

Conservation of energy was checked in both the Vlasov and particle solu-

tions. The relative energy error is 2 X 10"4 for the Vlasov solution and

1.2 X 10'4 for the particie solution. To give some idea of the computing

time, the unoptimized Vlasov code required - 13 min. on the 360/91 for this

problem. This compared reasonably with the time of - 15 min. required by

the unoptimized particle code. 2 2

14



Several additional runs on the particle code were made to investigate

spurious oscillations which had been observed in earlier runs with fewer

discrete beams. The solid line in Fig. 4 shows the electrostatic energy

when iO0 particles are loaded identically at every grid point, thus forming

100 discrete beams. in contrast to the smooth behavi3r of the 1600-beam

case shown in Fig. 1, strong oscillations of the fundamental (n = 1) with a

frequency w t 2 are now superimposed. These oscillations may le attri-

buted to beaming instabilities, since they do not appear when the number of

beams is increased. With the present quiet-start technique, the most

unstable beams are those representing the tails of the distribution function,

since they are the most widely separated. With 100 discrete velocities, the

last three beams are located at vb = 2.78, 2.99, and 3.37 vth, respectively.

The frequency of beaming instabilities is given by w t kv where k is the

wave number. In the present case, k corresponds to the fundamental; i.e.,

k= 2i. With v b- 3 v th we then have w - 1,8, which agrees with the

observed frequency. The observed growth rate of these spurious oscilla -

tions is - kAV, where AV is typical of the last few widely spaced beams.

To confirm that the spurious oscillations are caused by the instability of

beams around v 3 vt, a run was made in which only the last two beams

at each end of the distribution function were staggered. The resulting

electrostatic eaiergy is shown by the broken line in Fig. 4. Indeed, the

spurious oacillations now appear significantly later in time. This is

expected, of course, since the less separated beams, which were not

staggered, are also subject to instabilities but with smaller growth rates.

15



Case B

We now ccnsider a second case of a two-stream instability with equal

beams, in which several unstable modes are allowed to grow. The initial

conditions for this case are

21

(x•,v,t = 0 f (v) [1+ 2E cos (2vnx + .n)1  (13)

n=l

with

f (v) - a•L2 [exp -(v+v )2 /v2 + exp-(v-v )2/v2 (14)
S2 (Ir)1 - v P d

and vp = NrZ X 10-2, vd 2vp " 5x 103. The initial phase angles #n are chosen

at random ir the interval (0, 27r). These initial conditions correspond to a

system length of 100 X aand the dispersion relation shows that modes

I to 6 are unstable. This case was studied by Morse and Nielson23 using the

particle -in-cell method.

The total electrostatic energy for the Vlasov solution is given by the solid

line in Fig. 5. This solution was carried out with mmax = 21, qmax = 1000 and

Aq = 15. 6. The electrostatic energy reaches approcimately 6. 7% of the total

energy. We again observe that the instability saturates when the electron

bounce frequency in the dominant wave (0. 28) is approximately equal to its

linear growth rate (0.26).

The broken line in Fig. 5 corresponds to the particle solution with 25,600

particles and 256 cells. A quiet start was used to match the initial conditions

of the Vlasov code, including the same values of the phase angles .n" Only

16



100 velocities were used. The ditscrete beams set up by the quiet-start method

are rapidly disrupted by the collective instability in the present case, and no

spurious instabilities are observed. The relative energy error is

1.? X 10-4 for the Vlasov eolution, and 0.8 X 10-3 for the particle solution.

Comparisons of densities in phase space for the Viasov and particle solu-

tions at different times are given in Figs. 6, 7, and 8. For the Vlasov

solutions, numbers from I to 9 denote relative densities. Blanks correspond

to densities which are less than one tenth of the maximum density. Negative

signs correspond to negative valaes of the density. which occur because no form

factors were used in the present computation. For the particle solution, an

asterisk was printed at every location where at least one particle is present.

The results of Morse and Nielson for this case agree qualitatively with

the present results. The electrostatic energy in their case reaches only

5% of the total energy, and does not give the two distinct peaks shown in

Fig. 5. However, the case considered by Morse and Nielson corresponded

to a longer system length (L = 500 XD), In addition, these authors did not

control the initial conditions of their computations, but allowed the instability

to grow from the noise resulting from a random choice of initial particle

velocities. Their phase density plotd agree with those of Figs. 6, 7, and 8,

showing the same coalescing of the eddies when their system's length of

500 xD is taken into account.

17
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Case C

We now examine an instability resulting from the inte.gaction of a small

beam with a Maxwellian plasma. The initial conditions are

21

f(xv,t = 0) = fo(v) [1+ 2E ý n cos(Zirnx++ On) (15)

n=l

with

f (v)- I {n exp (-v/V)+ nb exp[-(V-Vd)2 /V~I} . (16)

p

Herev .(1/ -2) 10-,v d= 2.6v v b = 0.ZSv ,n =0 95, n b0.05,

-4
E = 2. 5 10 and the initial phase angles 0n are chosen at random. Thus

the small beam contains 5% of the plasma, and its mean velocity is 3.66

thermal velocities. These initial conditions correspond to a system length

(cf 100 AD. The dispersion relation shows that modes 1 to 9 are now unstable.

This case was also studied by Morse and Nielson, using the particle-in-

cell method.

The total electrostatic energy for the Vlasov solution without fot'm factors

is shown by the solid Lne in Fig. 9. This solution was carried out with

mmax = 42, qmax = 25/v p, and Aq = q max/128. The electrostatic energy

reach-s 1. 6% of the total energy. Again the instability saturates when the

electron bounce frequency in the dominant mode (0.16) is approximately

equal to its linear growth rate (0.15).

It has generally beeii fu-ind that each trapping region requires a minimum

of 8 to 10 modes for its representation. In Case A, where the most unstable

18



mode is the fundamental one and a single trapping region is present through

the system, qualitatively correct results were obtained with mmax = 10.

In the present case, mode m = 5 is the most unstable, and 42 modes were

found to be necessary to obtain a convergent solution. A solution with

rn -1 0 gave qualitatively different results beyond saturation. For
max

w t > 40, the m = 10 solution gave trapping oscillations which continued
p max

to grow in amplitude instead of dropping to the low levels shown in Fig. 9.

The circles in Fig. 9 correspond to the particle solution with 61, 440

particles and 256 cells. A quiet start was used again, to match the initial

conditions of the Vlasov solutions. In the present case, 960 velocity classes

were used to maintain the small-beam instabilities at a low level. The rela-.

tive energy error was -- 1C'4 for the Vlasov solution and -- 3 10-4 for the

particle solution.

The results of Morse and Nielson in this case again agree qualitatively

with the present results. The saturation electrostatic energy in their solu-

tion was 2% of the total energy instead of the 1. 6% in the present solutions.

This difference may again be due to the longer length of their system (200 XD)

and to random initial perturbations.

Case D

This case is concerned with sideband instabilities resulting from the

motion of trapped particles in a large-amplitude electrostatic wave. The

excitation of large-amplitude waves by means of an electrostatic probe

immersed in a warm plasma has been described by Wharton, Nlalbrner2,

19
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and O'NeiI. These experiments showed the expected amplitude modulation

of the wave, which is attributed to electron trapping, but they also disclosed

the appearance of sidebands to the frequency of the main wave. The growth

of these sidebands has been attributed by Kruer, Dawson, and Sudan2 to an

instability due to particles trapped in the large-amplitude wave, and has

26
been observed by Kruer and Dawson in particle simulations.

In the present computations, the initial distribution function of the plasma

is defined by
42

f(x,v,t = 0) = f (v) [I + 2E ncos(27Tnx+ _)] , (17)

n=l

with

f (v) - / exp [-(v /2Vt]
0 (2 )1/2

Here vth = 1.06/447r, E = 0.0002 and the initial phase angles are chosen at

random. These initial conditions correspond to a plasma length L = 130 X D

Mode n = 5 is then driven from t = 0 to t = 6 by the external field

E e(x,t) = EDR sin (w 0t + kx) , (19)

with EDR/Vth = 0.3 and eo = 1.06. The driving frequency w 0 is the Bohm-

Gross frequency corresponding to mode n = 5. and the ratio of the phase

velocity of the driving wave to the thermal velocity is w0/27Tn vth = 4.4.

The electrostatic energies of the main wave and' sidebands from the Vlasov

and particle solutions are compared in Figs. 10 and 11. The particle solu-

tion was carried out with 256 cells and 200 particles per cell. A quiet start

20



was used with 1600 discrete velocities to represent the distribution function.

The particles were given displacements to match the in• tial density perturbation

defined by Eq. (17). The particle half-width was a = 26 = A where 6 is

the cell length. The Vlasov solution was carried out with m = 42, thus
max

allowing approximately 8 modes for each trapping region. The truncation in

velocity transform was at qmax = 8/vth and the grid spacing was Aq = 1/8vth.

These values correspond to a velocity resolution Av -e 7T/q "• Vth/4 and

a maximum velocity v ma l/Aq = 8vh. A form factor was applied to the
max th*

electric field of the Vlasov solution corresponding to the particle half-width
L4

a = A used in the particle code. The relative energy error was 4 X 10-
D

for the particle solution and 3 X 10-4 for the Vlasov solution.

The main wave energy (electrostatic energy of mode n = 5) and the lower

sideband energy (sum of the electrostatic energies of modes n = I to 4) are

Sshow n in F ig. 10 on a logarithm ic scale. The m ain w ave energy rises rapidly

during the driving period to 29.4% of the initial kinetic energy, after which

it oscillates with approximately the trapping oscillation period (TTR : 20.7).

We observe close agreement between the Vlasov and particle solutions for

the main wave. Indeed, the two curves are ne, rly identical until late in the

simulation. The lower sideband energy from the Vlasov and particle solu-

tions grows at the same rate (a ten-folding time of - 31) and even saturates

at the same level. The lower sidebands saturate when they acquire an energy

comparable to that of the large wave. Then the sideband waves disrupt the

particle trapping in the original large wave, as confirmed by phase space

plots. It should be emphasized that this problem is very nonlinear and is a

21
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strong test of both of the simulation techniques. We are accurately following

not only sizeable oscillations in the large wave energy, but also simultaneous

growth of oscillations at other wave numbers.

The upper sideband energy from both solutions is shown in Fig. II. The

main wave energy has been repeated on this figure to provide a reference.

Again, the two solutions agree well and even saturate at the same level.

The saturation level of the upper sideband is approximately an order of

magnitude below the saturation level of the lower sidebands. This lower

saturation level is reasonable since the upper sidebands have phase velocities

less than that of the main wave and hence are more readily damped by the

particles.

Several additional solutions were carried out with both the Vlasov and

the particle codes. The Vlasov solutions included a computation with

mmax = 85 and a weaker form factor (a = XD//2). This computation showed

only minor variations from the results of Figs. 10 and 11. The particle

solutions included one with fewer beams, to describe the distribut.on f,•ic-

tion. This calculation showed that details of the saturation levels (but not

the growth rates) are sensitive to the number of beams used. This is rea-

sonable, since the trapped particles responsible for the sidebands come

from the tail of the initial distribution, which is rather poorly represented

if too few beams are used.
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SUMMARY

This paper has presented quantitative comparisons of particle simu-

lations with multiple-mode solutions of the Vlasov equation including up to

85 modes. Previous solutions of this type had been limited to a few modes

only. The problems considered ranged in complexity from a two-stream

instability involving a single unstable mode and low electrostatic energy (2.2%

of the total energy) to an instability due to particles trapped in a large-ampli-

tude plasma wave. By using quiet starts to initialize tha particle simulations

and using a sufficient number of beams to suppress beaming instabilities,

c'ose agreement was found between the two methods.

Since the two methods differ fundamentally in their approach, the

agreement found confirms their validity. However, the problems considered

have shown limitations in both methods, which must be taken into account in

the physical interpretation of numerical simulation results. Discrete particle

effects in particle simulations, which are particularly evident in regions of

low density in phase space, yield beaming instabilities which must be mini-

mized or accounted for in the physical interpretation of the results. Similarly,

solutions of the Vlasov equation tend to develop i., reasizgly fine structures

with increasing time. The fine structures are suppressed by truncation of the

Fourier expansions to a finite number of modes, but enough modes must be

retained to make the half-widths Ax = 1/2 mmax and Av = 7T/qmax small

compared to the characteristic lengths and velocities of the phenomena being

consider.!d. As indicated in the discussion of Case III, approximately 8 to 10

modes are needed to represent each trapping region and the solution may be

altered in its general character if fewer modes are retained.
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Fig. 1 - Characteristics of Eq. (4) in the (t, q) plane
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